Model-Driven Development of a Biosignal Analysis Framework: Benefits and Impacts on Processes

Nikolas Hofmann · 08.11.2012
Introduction

- Biosignal analysis has versatile applications in medicine
- Mobile devices allow new scenarios
- Used systems vary:
 - Hardware
 - Platform (OS, frameworks, ...)
 - Software tools, e.g. processing software
 - Programming languages
- But: processes and methods of biosignal analysis remain in general the same!
Introduction

• Features
 • Acquisition and processing of biosignals
 • Real-time: infinite signals
 • Support of different platforms, here Java and Matlab

• Quality attributes:
 • Scalability
 • Multi-platform support
 • Ease-of-use
Introduction

• The systems share main features
 • → they constitute an application family/ product line
• Reuse of abstract
 • Knowledge
 • Structures
• Application frameworks address this type of reuse
 • Provide domain-specific structures and functionalities
 • Allow wide range of applications
Model-driven software development

- Model-driven software development (MDSD)
 - Developing models from which a software system can (partly) be generated
 - Mapping the problem domain to the technology domain
- Architecture is splitted up
 - Application architecture
 - Domain architecture
 - Models
 - Platforms and their transformations
Model-driven software development

- Model
 - Intention of models in MDSD gets more prescriptive than descriptive
- Metamodel
 - Defines a domain-specific language (DSL)
- Meta-metamodel
 - Defines elements of the metamodel
 - Self-describing
Model-Driven software development

- Models in the Model-Driven Architecture (MDA) by the OMG
 - Computing independent model (CIM)
 - Platform independent model (PIM)
 - Platform specific model (PSM)
- Transformations
 - Link or combine models („mapping“)
 - Manually or automatically
Model-Driven software development

- Models in the Model-Driven Architecture (MDA) by the OMG
 - Computing independent model (CIM)
 - Platform independent model (PIM)
 - Platform specific model (PSM)
Development process

- Overview:

```
Domain architecture development

Requirements engineering

Modelling

Transformation / generation

Manual implementation
```

Feedback arrow between Domain architecture development and Modelling.
Development process

- Domain architecture tasks
- Roles:
 - Domain expert
 - Domain analyst
 - Domain architect
 - Application developer (customer)
Development process

- Rather agile development
 - Short iterations
 - Prototyping
 - Refactoring
- Advantages:
 - Considering feedbacks between processes
 - Supports learning of the different tools
Domain architecture: domains

- Decomposition of the system along two axis
 - Horizontal: technical domains (layering)
 - Vertical: problem/subject domain, „scopes“ (components)

- Example domain biosignal analysis:
 - Several steps: acquisition, transport, processing, visualisation
Domain architecture: domains

Acquisition → Processing → Visualisation

Load data → Show data table

- Biosignals
- Nodes and connectors
- Components
- Eclipse components

Analysis process
Domain architecture: prototyping

- First a prototype for one platform
 - Validation of requirements
 - Testing of technologies and domain concepts
 - Represents one member of the application family
- Afterwards implementation on another platform
Development process

- Domain analysis
- Reference model development
- Reference implementation
- Deriving transformations
Domain architecture: reference implementation

• Refined implementation of the first prototypes
• Aims at developing the domain architecture
• Used as reference
 • Results of domain architecture development continuously compared with
Domain architecture: retrieving models

• Models
 • Abstraction of all reference prototypes
• Platform Independent Models (PIMs):
 • Implemented here as textual DSL
 • Languages and models are developed alternately
• Comparison with reference model demands code generation
 • → Development of generators in parallel
Development process

Domain analysis

Reference model development

Reference implementation

Deriving transformations
Domain architecture: transformations

• More levels of abstraction are necessary
 • Separation of concerns (domains)
 • Reduction of complexity
• Biosignal data structures modelled as PIM
• Platform-specific details moved to PSMs
 • Allows multiple-platform support
 • Differences are e.g. the dealing with data sequences (arrays vs. matrices)
 • → reuse of PIMS (more abstract models)
Domain architecture: code generation

- Source code can be generated from models
- Model-to-text transformation
- → Generators
 - For each target language
Discussion

• Short iterations
 • Support interaction between different tools
 • Allow feedbacks → distribution of tasks to different roles or persons
 • „parallel“ development
 • Reduce risks
• Development of models and transformations for an additional platform can be done with less effort
• Initial effort is high
• Development strongly relies on tools
 • Which are often in an early development stage
 • Changing and incompatible versions
Thank you for your attention!